Lecture O7 - Multicore Computation

Lecture O7
Multicore Computation

Lecture based on notes from
John Mellor-Crummey
Department of Computer Science
Rice University & Jernej Barbic

Lecture O7 - Multicore Computation

Microprocessor Architecture (Mid 90’s)

* Superscalar (SS) designs were the state of the art
—multiple instruction issue
—dynamic scheduling: h/w tracks dependencies between instr.
—speculative execution: look past predicted branches
—non-blocking caches: multiple outstanding memory ops

* Circuit density continues to double every 18 months
—provides raw material for more logic
—enables higher clock frequencies

* Apparent path to higher performance?
—wider instruction issue
—support for more speculation

This was thinking mid-90s.

Lecture O7 - Multicore Computation

“Flies in the Ointment”

Claim: {} issue width of SS will provide diminishing returns
Two factors

* Fundamental circuit limitations

* Limited amount of instruction-level parallelism

Lecture O7 - Multicore Computation

Superscalar Designs (e.g. R10K, PA-8K)

Inatnartioe fnwu ad Eancastion

* 3 phases - — -
—instruction fetch e o] =
—issue and retirement == 3
—execution — = s

* Circuit-level performance limiters? 5

—issue and retirement |
— issue instruction when all operands ready
— register renaming: avoid artificial dependences

PA-8K:

Circuit complexity mapping table: (operands * issue width) ports 20% die area
and interconnect reorder buffer: # 1-bit comparators = -
delay limit operands * issue width * log,(# reg) * issue Q length
pr'ac'ricali'ry of — widerissue widths increase need for deeper issue Q's for sufficient [|-ism
support structures claims:
for Iar'ger' issue ——» quadratic increase in size of issue Q

long wires for bcast tags of issued instr. = ultimately limit cycle time
—execution phase: quadratic { register file, quadratic { bypass logic
— Farkas et al '96: 8-issue only 20% > 4-issue (reg file complexity limits perf))

width

The case for a single-chip multiprocessor, Olukotun et al., ASPLOS-VII, 1996. 4

Lecture O7 - Multicore Computation

Range of a Wire in One Clock Cycle

« 400 mm2 Die
« From the SIA Roadmap

SERTE=6 GHz
@ == ok
- == E"!',f_u_: 13.5 GHz

p—T - —_— T

———
———

1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

Prof. Saman Amarasinghe, MIT. 14 6.189 |AP 2007 MIT

Lecture O7 - Multicore Computation

Circuit Technology Impact Summary

* Delays { as issue queues { and multi-port register files {

* Increasing delays limit performance returns from wider issue

Lecture O7 - Multicore Computation

Instruction-level Parallelism Concerns

Issue Waste

issue slots

— B full issue slot
O empty issue slot

horizontal waste=9 slots

cycles

vertical waste= 12 slots

* Contributing factors
—instruction dependencies
—Ilong-latency operations within a thread

How do they contribute to waste?

Lecture O7 - Multicore Computation

Sources of Wasted Issue Slots

TLB miss
—Ilarger TLB; h/w inst prefetching; h/iw or s/w data prefetch

| cache miss
—larger icache, more icache associativity; h/w prefetch

D cache miss
—larger, more associative, prefetching, more dynamic execution

Control hazard
—speculative execution; aggressive if-conversion

Branch misprediction
—better prediction logic; lower mispredict penalty

Load delays (L1 hits)
—shorten load latency; better scheduling

Instruction delays
—better scheduling

Memory conflict (multipleaccess to same location in a cycle)
—improved scheduling

Lecture O7 - Multicore Computation

How Much IPC is There?

* Approach: study applications and evaluate their characteristics
—assess quantity and character of parallelism present

* Are there any pitfalls to this approach?

* |s there any other approach?

Lecture O7 - Multicore Computation

Simulations

of 8-issue Superscalar

“ ARk ?; 16 7 Simultaneous multithreading: maximizing
» HHYE A0|I| H onchip parallelism, Tullsen et. al. ISCA, 1995.
- 5 1 E L ES :
80 — g ' ; ‘ mcmm conflict
= :f. EE A iong fp
w f fa A5 5 short fp
i 70 E : : — = long integer
o ex | 3 B shon inieger
ER | & [10ad delays
= F] control hazards
E 0 Ehmmh misprediction
":" .dﬂchl: miss
£ 49- II[! icache miss
g B dtib miss
-

.itlb miss

. processor busy

L
=]

20

Applications: most of SPEC92
* Onaverage <1.5IPC (19%)

* Dominant waste differs by appl.
* Short FP dependences: 37%

* G other causes = 4.5%

Applications

Lecture O7 - Multicore Computation

Analysis of 8-issue Simulations

No dominant cause of wasted cycles

No dominant solution
—no single latency-tolerance technique likely to help dramatically

Even if memory latencies eliminated, utilization < 40%

Tullesen et. al. claim

—“instruction scheduling targets several important segments of
the wasted issue bandwidth, but we expect that our compiler has
already achieved most of the available gains in that regard”

If specific latency hiding mechanisms limited
—need general latency hiding solution for increases in parallelism

Lecture O7 - Multicore Computation

Some important points

Technology alone is not driving push to multi-core

- What was state of the art - more issue, superscalar -
provides diminishing performance returns b/c of
program properties

Still, performance qains possible with scaling

Instructions Clock cveles Seconds

X
Program Instruction

= CPU time

Program

If CCs/instruction performance gains tapped out +
scaling performance inhibited (b/c of lower V_,, lower
clock rates), whare does performance come from?

Instructions Clockeveles Seconds Seconds
X = CPU time

x =
Program Instruction Clock Cycle Program

Lecture O7 - Multicore Computation

Some important points

Performance must come from combination of
parallelism + previously ignored HW optimizations

- E.g. instead of getting 2x from technology, get 10%
from A, 5% from B, etc.

Lecture O7 - Multicore Computation

What Should be Next?

* If not {} superscalar issue width, then what?

* Alternatives

—single chip multiprocessor
—simultaneous multithreaded processor

* How should we decide?

* Best approach depends upon application characteristics

Lecture O7 - Multicore Computation

The Case for a Single-chip
Multiprocessor

Lecture O7 - Multicore Computation

The Case for a Single Chip Multiprocessor

Two motivations

* “Technology push”

—delays { as issue queues lengthen and multi-port register files
grow

—increasing delays limit performance returns from wider issue
* “Application pull”
—Ilimited IPC is a problem

Lecture O7 - Multicore Computation

Comparing Alternative Designs

* Consider two microarchitectures
—6-way superscalar architecture
—4 x 2-way superscalar multiprocessor architecture

Lecture O7 - Multicore Computation

Floorplans: 6-issue SS vs. 4 x 2 CMP

6-issue superscalar 4x2CMP
— 21 mm - - Fall ol -
N A o T AR RRESET L
lnts:truiﬁnn
E sl . acne
intartace] '"ﬁr__‘l;gi';l“" (32 KB) e
- Processor | Processor _
ne <] #1 #2 %
Inst. Decode & s -
'§ Rename ;;E;adt?e % 'E <
e (32 KB) g ” 2
o2 3| |3 e 5| 3
§ Reorder Buffer, Y E 2 Y
3 | Instruction Queues, = = 3 8 =
and Out-of-Order Logic | S 5 i o g S
e rocassor rocessor
ga & #3 #4 g o
Floating Point -
Unit z

4 x 2 CMP differences

—simpler issue logic —1/4 size branch prediction buffer
—much simpler renaming logic —more execution units

Lecture O7 - Multicore Computation

Single-core computer

CPU chip

register file

P,

“ [ALU

A

syatam bus
L~

7

meamaory bus

bus intert (o |7 ™| main
Hs interace A" | bridge | ™ L~ | memory
' N
1 [
= 2
- 10 b] |:| [2
4 \7 J L ; us J L Expansion slots for
,s e o other devices such
UsB graphics disk as network adapters.
controllar adapter controller
! I | |
mouse keyhoard monitor —

=213, 506

Lecture O7 - Multicore Computation

Multi-core architectures

* This lecture is about a new trend in
computer architecture:
Replicate multiple processor cores on a

single die.
Core 1 Core 2 Core 3 Core 4
registar file register file register file register file
—h B,) h,
L) : L]
+_'|ALU 4 " ALU i |ALU V| ALU
- (] (] -
1T 1T 1T 10
. _ _ _ _ | \
bus interface ' _ p
N %
Multi-core CPU chip The cores fit on a single processor socket

(also called CMP - chip multiprocessor)

Lecture O7 - Multicore Computation

The cores run in parallel

thread 1 thread 2 thread 3 thread 4
c c c c
)) o o
r r r r
e e e e
1 2 3 4

Lecture O7 - Multicore Computation

Within each core, threads are time-sliced
(just like on a uniprocessor)

several several several several
threads threads threads threads
o o o o
0 0 0 0
r r r r
e e e e
1 2 3 4

Yyy Yyyy Yyy Yyy

Lecture O7 - Multicore Computation

Back to case study...

Lecture O7 - Multicore Computation

Integer Benchmarks

* eqntott: translates logic equations into truth tables
—manually parallelized bit vector comparison routine (90% time)

* compress: compresses and uncompresses files in memory
—unmodified on both SS and SMT architectures

* mé88ksim: simulates Motorola 88000 CPU
—manually parallelized into 3 threads using SUIF compiler
— threads simulate different instructions in different phases
parallelization analogous to the h/w pipelining it simulates

* MPSim: simulates a bus-based multiprocessor
—manually assign parts of model hierarchy to different threads
—4 threads: one for each simulated CPU

(standard benchmarks The case for a single-chip multiprocessor,

:) Olukotun et al., ASPLOS-VII, 1996.
parallelized for comparison) .

Lecture O7 - Multicore Computation

FP and Multiprogramming Benchmarks

Floating point applications (all parallelized with SUIF)

applu: solves parabolic/eliptic PDEs
apsi: computes temp, wind, velocity, and distrib. of pollutants
swim: shallow water model with 1k x 1k grid

tomcatv: generates mesh using Thompson solver

Multiprogramming application

pmake: performs parallel make of gnuchess (C compiler)
—same application simulated on both architectures
—OS exploits extra PEs in MP architecture to run parallel compiles

The case for a single-chip multiprocessor,
Olukotun et al., ASPLOS-VII, 1996.

Lecture O7 - Multicore Computation

IPC Breakdown of Superscalar PEs

2-issue
- The case for a single-chip multiprocessor,
BE R R R R B B Olukotun et al., ASPLOS-VII, 1996.
| : f{ .
6455ue
= ; ; .
I I . - * Large fraction of time due to dcache stalls

I
|
5 * G-issue
{
1

2 — pipeline stalls increase: lack of IPC
— less icache stalls with larger icache
I I — FP appl have significant ILP, but dcache
stalls consume > 50% IPC

Lecture O7 - Multicore Computation

Performance: 4 x 2 CMP vs. 6-issue SS

Ralative Spaadup

* Non-parallelizable codes
—wide superscalar architecture

_______performs up to 30% befter
* Codes with fine-grain thread-level

parallelism

—wide superscalar architecture is at
most 10% better w/ same clock
frequency

—eXpect that simpler CPUs in CMP
would support higher clock rates
that would eliminate this
difference

Codes with coarse-grain thread-

level parallelism and
multiprogramming workloads

—CMP performs 50-100% better
than wide superscalar

(If CPU time constant,
performance comes from

parallelism)

Lecture O7 - Multicore Computation

Take Aways

Lecture O7 - Multicore Computation

Why multi-core ?

Difficult to make single-core
clock frequencies even higher

Deeply pipelined circuits:

— heat problems

— speed of light problems

— difficult design and verification

— large design teams necessary

— server farms need expensive
air-conditioning

Many new applications are multithreaded

General trend in computer architecture (shift
towards more parallelism)

Lecture O7 - Multicore Computation

What applications benefit
from multi-core?

Database servers

Web servers (Web commerce)
Compilers

Multimedia applications

Scientific applications,
CAD/CAM

In general, applications with
Thread-level parallelism

(as opposed to instruction-
level parallelism)

I' Ly |"'|I - 'I" i, | L1}
l—.u lfj | alu- 1

aldl il
o g

llliiilll@&hh

a':-m=|
+ T

. [THER R e
=] =

‘-—j

Each can
run on its
own core

Lecture O7 - Multicore Computation

More examples

* Editing a photo while recording a TV show
through a digital video recorder

» Downloading software while running an
anti-virus program

« “Anything that can be threaded today will
map efficiently to multi-core”

« BUT: some applications difficult to
parallelize

Lecture O7 - Multicore Computation

Multi-core flavors

Cores need not be the same
- (If they are, we talk about symmetric core machines)

- (If not, asymmetric)
- Imagine FPGA + GP processor?

Lecture O7 - Multicore Computation

Other issues:

(Amdahl’'s Law and Parallelization)

Lecture O7 - Multicore Computation

The cache coherence problem

» Since we have private caches:
How to keep the data consistent across caches?

* Each core should perceive the memory as a
monolithic array, shared by all the cores

@@@@

Jne or more
levels of
cache

levels of
cache

e ar rmore

e or more
levels of
cache

Cne ar mare
levels af
cache

Main mermary

mult-core chip

Lecture O7 - Multicore Computation

The cache coherence problem

Suppose variable x initially contains 15213

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Main memory

Xx=15213

multi-core chip

Lecture O7 - Multicore Computation

The cache coherence problem

Core 1 reads x

Core 1 Core 2
One or more One or more
levels of levels of
cache cache

x=15213

Core 3 Core 4
One or more One or more
levels of levels of
cache cache

Main memory
X=15213

multi-core chip

Lecture O7 - Multicore Computation

The cache coherence problem

Core 2 reads x

Core 1 Core 2
One or more One or more
levels of levels of
cache cache
x=15213 x=15213

Core 3 Core 4
One or more One or more
levels of levels of
cache cache

Main memory
X=15213

multi-core chip

Lecture O7 - Multicore Computation

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1 @ @ Core 4

x=21660

}

write-through
caches

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 x=15213
multi-core chip
Main memory assuming

Lecture O7 - Multicore Computation

The cache coherence problem

Core 2 attempts to read x... gets a stale copy

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 x=15213

Main memory

x=21660

multi-core chip

Lecture O7 - Multicore Computation

Solutions for cache coherence

* This is a general problem with
multiprocessors, not limited just to multi-core

* There exist many solution algorithms,
coherence protocols, etc.

* A simple solution:
invalidation-based protocol with snooping

Lecture O7 - Multicore Computation

Other issues:
Core-to-core communication

An"‘ NN\ "Ir‘\
* e 0 e 0 o e o Q) —‘ '::)
[T S . T S (A EL!;—. —
R S I)|))} w))]) q—')
o0 0 b0 9 s s LI el ap)
P S S S S S S TG u) Jmp;
S S S S I O %J
o n oo -s—s CQOOOIONOND],,‘)
L e T T T T] (uf —)] C O (
[| [AW A WL W
{(a) Mesh (b) Torus {c) CMesh

Figure 8: Network Topologies

CJ G
, | B m
S I EESOUESSRE ' D._"‘—‘E:l_'_ ']
* ’__, rE]
T e -+ | | e 3
] |)] | [l L‘ o Ll«
[TEEser el [Soa—r oy Pis Fic i s P)) t
Tt et | HLLT]
BRSSO [(S5 eoty E
(a) Mesh/MeshX2 (b) Torus (e¢) CMesh/CMeshX2 (d) FTree (e) FClos

Figure 9: Placement of Routers used to Estimate Area (Lower Left Quadrant)

Must factor in communication costs in processing time too...

Lecture O7 - Multicore Computation

Back to Processor-Memory Wall
(still need to feed cores)

(Peter Kogge will discuss on Monday)
(Not only a problem for multi-core)

